Total Pageviews

Sistem Server - Packet Tracer

 Beberaa Tutorial dari packet Traceer


1. NTP Server  dan  Syslog Server   



2. Access List Basic, tahap 1 dan tahap 2

access list tahap 1

access list tahap 2









IP Versi 6

 di catatan ini mengenai IP versi 6


1. Konfigurasi Packet tracert host, switch, router menggunakan ipversi 6 , dengan ip publik versi 6 (GUA) dan ip lokal versi 6, LLA


2. DHCP dengan menggunakan IP versi 4 dan ip versi 6




Algortima Priority Scheduling

algortima priory scheduling 

dengan bahasa phyton .



Kode masih di pelajari:
=======================
# Python3 implementation for Priority Scheduling with 
# Different Arrival Time priority scheduling 
"""1. sort the processes according to arrival time 
2. if arrival time is same the acc to priority 
3. apply fcfs """

totalprocess = 5
proc = [] 
for i in range(5): 
l = [] 
for j in range(4): 
l.append(0) 
proc.append(l) 

# Using FCFS Algorithm to find Waiting time 
def get_wt_time( wt): 

# declaring service array that stores 
# cumulative burst time 
service = [0] * 5

# Initilising initial elements 
# of the arrays 
service[0] = 0
wt[0] = 0

for i in range(1, totalprocess): 
service[i] = proc[i - 1][1] + service[i - 1] 
wt[i] = service[i] - proc[i][0] + 1

# If waiting time is negative, 
# change it o zero 
if(wt[i] < 0) :  
wt[i] = 0
def get_tat_time(tat, wt): 

# Filling turnaroundtime array 
for i in range(totalprocess): 
tat[i] = proc[i][1] + wt[i] 

def findgc(): 
# Declare waiting time and 
# turnaround time array 
wt = [0] * 5
tat = [0] * 5

wavg = 0
tavg = 0

# Function call to find waiting time array 
get_wt_time(wt) 
# Function call to find turnaround time 
get_tat_time(tat, wt) 

stime = [0] * 5
ctime = [0] * 5
stime[0] = 1
ctime[0] = stime[0] + tat[0] 
# calculating starting and ending time 
for i in range(1, totalprocess): 
stime[i] = ctime[i - 1] 
ctime[i] = stime[i] + tat[i] - wt[i] 

print("Process_no\tStart_time\tComplete_time", 
"\tTurn_Around_Time\tWaiting_Time") 

# display the process details 
for i in range(totalprocess): 
wavg += wt[i] 
tavg += tat[i] 
print(proc[i][3], "\t\t", stime[i], 
"\t\t", end = " ") 
print(ctime[i], "\t\t", tat[i], "\t\t\t", wt[i]) 


# display the average waiting time 
# and average turn around time 
print("Average waiting time is : ", end = " ") 
print(wavg / totalprocess) 
print("average turnaround time : " , end = " ") 
print(tavg / totalprocess) 

# Driver code 
if __name__ =="__main__": 
arrivaltime = [1, 2, 3, 4, 5] 
bursttime = [3, 5, 1, 7, 4] 
priority = [3, 4, 1, 7, 8] 
for i in range(totalprocess): 

proc[i][0] = arrivaltime[i] 
proc[i][1] = bursttime[i] 
proc[i][2] = priority[i] 
proc[i][3] = i + 1
# Using inbuilt sort function 
proc = sorted (proc, key = lambda x:x[2]) 
proc = sorted (proc) 
# Calling function findgc for 
# finding Gantt Chart 
findgc() 

# This code is contributed by 
# Shubham Singh(SHUBHAMSINGH10) 
===============================================

video menyusul ..

Algoritma Shortest Remaining Time First (SRTF)

 



kode ini masih belum sempurna...masih ada beda sedikit dengan manual, 

tapi untuk memahami tidak masalah 



[==============================================================

# Python3 program to implement Shortest Remaining Time First 

# Shortest Remaining Time First (SRTF) 


# Function to find the waiting time 

# for all processes 

def findWaitingTime(processes, n, wt): 

rt = [0] * n 


# Copy the burst time into rt[] 

for i in range(n): 

rt[i] = processes[i][1] 

complete = 0

t = 0

minm = 999999999

short = 0

check = False


# Process until all processes gets 

# completed 

while (complete != n): 

# Find process with minimum remaining 

# time among the processes that 

# arrives till the current time` 

for j in range(n): 

if ((processes[j][2] <= t) and

(rt[j] < minm) and rt[j] > 0): 

minm = rt[j] 

short = j 

check = True

if (check == False): 

t += 1

continue

# Reduce remaining time by one 

rt[short] -= 1


# Update minimum 

minm = rt[short] 

if (minm == 0): 

minm = 999999999


# If a process gets completely 

# executed 

if (rt[short] == 0): 


# Increment complete 

complete += 1

check = False


# Find finish time of current 

# process 

fint = t + 1


# Calculate waiting time 

wt[short] = (fint - proc[short][1] -

proc[short][2]) 


if (wt[short] < 0): 

wt[short] = 0

# Increment time 

t += 1


# Function to calculate turn around time 

def findTurnAroundTime(processes, n, wt, tat): 

# Calculating turnaround time 

for i in range(n): 

tat[i] = processes[i][1] + wt[i] 


# Function to calculate average waiting 

# and turn-around times. 

def findavgTime(processes, n): 

wt = [0] * n 

tat = [0] * n 


# Function to find waiting time 

# of all processes 

findWaitingTime(processes, n, wt) 


# Function to find turn around time 

# for all processes 

findTurnAroundTime(processes, n, wt, tat) 


# Display processes along with all details 

print("Processes Burst Time Waiting", 

"Time Turn-Around Time") 

total_wt = 0

total_tat = 0

for i in range(n): 


total_wt = total_wt + wt[i] 

total_tat = total_tat + tat[i] 

print(" ", processes[i][0], "\t\t", 

processes[i][1], "\t\t", 

wt[i], "\t\t", tat[i]) 


print("\nAverage waiting time = %.5f "%(total_wt /n) ) 

print("Average turn around time = ", total_tat / n) 

# Driver code 

if __name__ =="__main__": 

# Process id's 

print ("algoritma Shortest Remaining Time First ")

print("             ")    

proc = [[1, 6, 1], [2, 8, 1], 

[3, 7, 2], [4, 4, 3]] 

n = 4

findavgTime(proc, n) 

# This code is contributed 

# Shubham Singh(SHUBHAMSINGH10) 

# modified by andrew  @2020


================================================



Algortima Shortest Seek Time First

 Algoritma Shortest Seek Time First (SSTF)

untuk penjadwlan Disk 

dalam bahasa phyton, :

 idenya adalah mencari posisi yang terdekat dari head. (titik awal ) ke proses proses selanjutnya.


Keuntungan dan kerugian dalam algoritma ini adalah 

Advantages of Shortest Seek Time First (SSTF) –

  1. Better performance than FCFS scheduling algorithm.
  2. It provides better throughput.
  3. This algorithm is used in Batch Processing system where throughput is more important.
  4. It has less average response and waiting time.

Disadvantages of Shortest Seek Time First (SSTF) –

  1. Starvation is possible for some requests as it favours easy to reach request and ignores the far away processes.
  2. Their is lack of predictability because of high variance of response time.
  3. Switching direction slows things down.
Program dalam phyton 
=============================================================

# Python3 program for implementation of  
# SSTF disk scheduling  
  
# Calculates difference of each  
# track number with the head position 
def calculateDifference(queue, head, diff): 
    for i in range(len(diff)): 
        diff[i][0] = abs(queue[i] - head)  
      
# find unaccessed track which is  
# at minimum distance from head  
def findMin(diff):  
  
    index = -1
    minimum = 999999999
  
    for i in range(len(diff)): 
        if (not diff[i][1] and 
                minimum > diff[i][0]): 
            minimum = diff[i][0] 
            index = i 
    return index  
      
def shortestSeekTimeFirst(request, head):              
        if (len(request) == 0):  
            return
          
        l = len(request)  
        diff = [0] * l 
          
        # initialize array  
        for i in range(l): 
            diff[i] = [0, 0] 
          
        # count total number of seek operation      
        seek_count = 0
          
        # stores sequence in which disk  
        # access is done  
        seek_sequence = [0] * (l + 1)  
          
        for i in range(l):  
            seek_sequence[i] = head  
            calculateDifference(request, head, diff)  
            index = findMin(diff)  
              
            diff[index][1] = True
              
            # increase the total count  
            seek_count += diff[index][0]  
              
            # accessed track is now new head  
            head = request[index]  
      
        # for last accessed track  
        seek_sequence[len(seek_sequence) - 1] = head  
          
        print("Total number of seek operations =",  
                                       seek_count)  
                                                          
        print("Seek Sequence is/ /Urutan Proses nya : ")  
          
        # print the sequence  
        for i in range(l + 1): 
            print(seek_sequence[i])  
      
# Driver code  
if __name__ =="__main__": 
      
    # request array  
    
    proc = [176, 79, 34, 60,  
            92, 11, 41, 114] 
    print("Data awal adalah ", proc)
    print("Titik Awal di posisi 50 ")
    print("   ")
    shortestSeekTimeFirst(proc, 50) 
      
# This code is contributed by 
# Shubham Singh(SHUBHAMSINGH10) 
# Modified by andrew @2020
============================================================

video youtube menyusul 

Contoh Program Penjadwalan FIFO

 Video 



Contoh Penjadwalan FIFO (First In First Out) 

Menggunakan Phyton 


kode Program :

=====================================================================

# FIFO 

# Python3 program for implementation 

# of FCFS scheduling 


# Function to find the waiting 

# time for all processes 

def findWaitingTime(processes, n, 

bt, wt): 


# waiting time for 

# first process is 0 

wt[0] = 0


# calculating waiting time 

for i in range(1, n ): 

wt[i] = bt[i - 1] + wt[i - 1] 


# Function to calculate turn 

# around time 

def findTurnAroundTime(processes, n, 

bt, wt, tat): 


# calculating turnaround 

# time by adding bt[i] + wt[i] 

for i in range(n): 

tat[i] = bt[i] + wt[i] 


# Function to calculate 

# average time 

def findavgTime( processes, n, bt): 


wt = [0] * n 

tat = [0] * n 

total_wt = 0

total_tat = 0

print ("Contoh  First Come First Serve ")

print ("Waiting Time = Turn Around Time - Burst Time ")

    

# Function to find waiting 

# time of all processes 

findWaitingTime(processes, n, bt, wt) 


# Function to find turn around 

# time for all processes 

findTurnAroundTime(processes, n, 

bt, wt, tat) 


# Display processes along 

# with all details 

print( "Processes Burst time " +

" Waiting time " +

" Turn around time") 


# Calculate total waiting time 

# and total turn around time 

for i in range(n): 

total_wt = total_wt + wt[i] 

total_tat = total_tat + tat[i] 

print(" " + str(i + 1) + "\t\t" +

str(bt[i]) + "\t " +

str(wt[i]) + "\t\t " +

str(tat[i])) 


print( "Average waiting time = "+

str(total_wt / n)) 

print("Average turn around time = "+

str(total_tat / n)) 


# Driver code 

if __name__ =="__main__": 

# process id's 

processes = [ 1, 2, 3] 

n = len(processes) 


# Burst time of all processes 

burst_time = [10, 5, 8] 


findavgTime(processes, n, burst_time) 


# This code is contributed 

# by ChitraNayal 

#modified by andrew @2020

==================================================================

Video youtube menyusul 

Sistem Operasi - Pemrograman Round Robin

 

Contoh Pemrograman Round Robin Dengan Phyton 


Kode Phyton nya

====================================================

# Python3 program for implementation of  

# RR scheduling  

  

# Function to find the waiting time  

# for all processes  

def findWaitingTime(processes, n, bt,  

                         wt, quantum):  

    rem_bt = [0] * n 

  

    # Copy the burst time into rt[]  

    for i in range(n):  

        rem_bt[i] = bt[i] 

    t = 0 # Current time  

  

    # Keep traversing processes in round  

    # robin manner until all of them are 

    # not done.  

    while(1): 

        done = True

  

        # Traverse all processes one by 

        # one repeatedly  

        for i in range(n): 

              

            # If burst time of a process is greater  

            # than 0 then only need to process further  

            if (rem_bt[i] > 0) : 

                done = False # There is a pending process 

                  

                if (rem_bt[i] > quantum) : 

                  

                    # Increase the value of t i.e. shows  

                    # how much time a process has been processed  

                    t += quantum  

  

                    # Decrease the burst_time of current  

                    # process by quantum  

                    rem_bt[i] -= quantum  

                  

                # If burst time is smaller than or equal   

                # to quantum. Last cycle for this process  

                else: 

                  

                    # Increase the value of t i.e. shows  

                    # how much time a process has been processed  

                    t = t + rem_bt[i]  

  

                    # Waiting time is current time minus  

                    # time used by this process  

                    wt[i] = t - bt[i]  

  

                    # As the process gets fully executed  

                    # make its remaining burst time = 0  

                    rem_bt[i] = 0

                  

        # If all processes are done  

        if (done == True): 

            break

              

# Function to calculate turn around time  

def findTurnAroundTime(processes, n, bt, wt, tat): 

      

    # Calculating turnaround time  

    for i in range(n): 

        tat[i] = bt[i] + wt[i]  

  

  

# Function to calculate average waiting  

# and turn-around times.  

def findavgTime(processes, n, bt, quantum):  

    wt = [0] * n 

    tat = [0] * n  

  

    # Function to find waiting time 

    # of all processes  

    findWaitingTime(processes, n, bt,  

                         wt, quantum)  

  

    # Function to find turn around time 

    # for all processes  

    findTurnAroundTime(processes, n, bt, 

                                wt, tat)  

  

    # Display processes along with all details  

    print("Processes    Burst Time     Waiting",  

                     "Time    Turn-Around Time") 

    total_wt = 0

    total_tat = 0

    for i in range(n): 

  

        total_wt = total_wt + wt[i]  

        total_tat = total_tat + tat[i]  

        print(" ", i + 1, "\t\t", bt[i],  

              "\t\t", wt[i], "\t\t", tat[i]) 

        

    print ("quantum time = ", quantum) 

    print("\nAverage waiting time = %.5f "%(total_wt /n) ) 

    print("Average turn around time = %.5f "% (total_tat / n))  

      

# Driver code  

if __name__ =="__main__": 

      

    # Process id's  

    proc = [1, 2, 3] 

    n = 3

  

    # Burst time of all processes  

    burst_time = [8,4,6]  

  

    # Time quantum  

    quantum = 2;  

    findavgTime(proc, n, burst_time, quantum) 

  

# This code is contributed by 

# Shubham Singh(SHUBHAMSINGH10) 

#modified by andrew fiade @2020

============================================================

Anda dapat menggunakan google colabs , dapat copy paste langsung .


Video Penjelasan 




tips kerja

  adblock google chrome microsof edge : extension